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Cellular Stokes flow induced by rotation of a 
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The evolution of the cellular structure of the two-dimensional creeping flow induced 
by a rotating circular cylinder set in the centre of a rectangular channel is studied 
numerically and experimentally when the aspect ratio A increases from 1 to 7. In  the 
calculations, depending on the value of A ,  either only series in terms of polar 
coordinates, or both matched polar and Cartesian coordinates series are employed 
to represent the stream function and an efficient least-squares method, very easy to 
program, is selected to satisfy some of the boundary conditions. For the experiments, 
a special technique which visualizes intermittently the paths of solid tracers during 
long times of exposure permits us to observe the fluid motion in the whole domain, 
even in the regions where the velocities are very small. An excellent measure of 
agreement between the numerical and experimental results is found. Thus it is 
clearly shown how, in the region beyond the rotating flow directly driven by the 
cylinder, the two main corner cells visualized at A = 1,  develop with increasing A and 
then coalesce, to finally merge and give rise to a single central cell. This central cell 
develops in its turn, tending finally to the unbounded channel reference cell, after 
passing through a maximum length however. Owing to the very high precision of the 
calculations, many details of the flow development have been clearly shown, in 
particular the periodicity, with increasing A ,  of all the different phases, progressively 
inducing a succession of cells. The prediction that the angle of separation of the fluid 
boundaries of the cells tends towards the theoretical limit of 58.61" when the aspect 
ratio becomes large is also confirmed. 

1. Introduction 
The literature shows that during the last decade numerous works on creeping flows 

have been devoted to separation phenomena and to the viscous cells which generally 
result. This cellular motion interests scientists not only from a fundamental point of 
view , but also because it is encountered in numerous applications, described for 
example by Shen & Floryan (1985), Higdon (1985) and Rybicki & Floryan (1987). 

By studying the plane flow at a sharp corner, Dean & Montagnon (1949) were the 
first to find complex exponents in solutions of the Stokes equation, expressed in the 
polar form, when the angle subtended by the intersecting planes is less than 146" 3'. 
Fifteen years later, Moffatt (1964) showed that these complex exponents imply the 
existence of an infinite set of eddies of decreasing size and intensity as the corner is 
approached. Since then, separation phenomena have been found for variously shaped 
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bounding walls and bodies. For example, Sanders, O'Brien & Joseph (1980) again 
investigated, analytically and numerically, the case examined by Moffatt when the 
angle between the intersecting planes is 10" and obtained ten successive cells. Collins 
& Dennis (1976) considered the two-dimensional secondary flow generated by a 
primary axial flow, under a constant pressure gradient, through a curved tube whose 
cross-section is a right-angled isosceles triangle. These authors calculated the 
streamlines of six of the antisymmetric cells which develop in each of the 45' angles 
of the triangle and those of six of the symmetric cells in the 90" angle. Davis & O'Neill 
(1977) showed analytically that, in the two-dimensional shear stress flow around a 
circular cylinder in contact with a plane, an infinite set of eddies is induced in each 
of the cusps. Moreover, when the cylinder is not exactly in contact with this plane, 
but a t  a short distance E less than 0.685a, where u is the cylinder radius, the flow 
separates alternately from the cylinder and the plane, forming eddies which interlace 
as E decreases. 

Some of these types of separated Stokes flows with cellular structure have also 
been observed experimentally. Thus, Taneda (1979) was able to visualize the first 
two cells in the flow confined by two 28'5' intersecting planes and driven by a 
rotating cylinder at the fluid surface. He also visualized the first viscous cell of the 
flow studied by Davis & O'Neill (just described above) for B = 0.50, 0.20 and 0. 
Various other examples may be found in Hasimoto & Sano's (1980) review. 

Moffatt suggested that the case of the flow between two intersecting planes leads 
one logically to consider the limiting case of zero angle, i.e. the case of two parallel 
boundary planes. In this category, the closed rectangular cavity has been studied 
most often. Thus, Weiss & Florsheim (1965), Burgraff (1966), Pan & Acrivos (1967), 
Mehta & Lavan (1969). O'Brien (1972), Shen & Ploryan (1985) and Higdon (1985) 
have all considered the flow induced in rectangular cavities for various values of the 
aspect ratio hlw,  where h and w arc the height and the width of the cavity 
respectively. The sources of motion were a Couette, Poiseuille or Couette-Poiseuille 
profile. In all cases, a cellular structure develops in the cavity. It consists, according 
to the value of hlw,  either in only small cells located in the cavity corners, usually 
called Moffatt cells, or in one or several other single cells, i.e. cells centred on the 
cavity axis. For example, Pan & Acrivos (1967), studying the flow induced by the 
uniform translation of the top wall, for h lw  = 0.25,0.50, 1,  2 and 5, found one single 
cell for hlw = 0.25, 0.50 and 1 which progressively grows as h lw  increases; on the 
other hand, they found two and four single cells for h lw  = 2 and 5 respectively. I n  
the latter case, the downward fourth cell appears to be strongly influenced by the 
fixed bottom walls, whereas the structures of the other cells are almost identical, with 
a length of 1.40 times the cavity width. 

The cellular structure of the flow in a rectangular cavity was confirmed 
experimentally by Taneda (1979) for h l w  = 0.5, 1 and 2. However, only the first of 
the two cells which are normally set up in a cavity of aspect ratio 2 has been 
Visualized. More recently, Hellou (1983) and Cotrtanceau et al. (1984), in their 
investigations of the flow induced by a rotating circular cylinder in a channel of 
aspect ratio 7 with a 0.50 confining ratio (the cylinder diameter divided by the 
channel width), have visualized experimentally two oppositely rotating successive 
cells which occur beyond the main current driven by the cylinder. 

When the planes become infinitcly large, O'Neill ( 1983) and Bourot (1984) have 
shown theoretically that, beyond a certain distance from the source of the motion, 
the flow consists of an iniinity of successive cells, with an antisymmetric behaviour 
if the source of the motion is not itself symmetrical. The axial dimension of these cells 
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is 1.40 times the channel width and the angle of separation of their fluid boundary 
is 58.61". From now on, they will be taken as a reference cell. 

The purpose of the present investigation is, by referring to the flow induced by a 
rotating cylinder placed in the centre of a rectangular channel, to show how the 
cellular structure, generated by successive flow separations, develops when the aspect 
ratio A of the channel increases from a square shape ( A  = 1) to  a sufficiently 
elongated shape ( A  = 7)  to render extrapolation to the infinite channel case possible. 
The confining aspect ratio was maintained at the value of 0.5. 

The study is conducted by developing in parallel numerical procedures and a 
visualization technique. These procedures and the technique are presented in 492 and 
3 respectively, the last section, $4, being devoted to the presentation of the 
corresponding results and to their comparison. An excellent agreement is found 
between the numerical and experimental results, and different phases and their 
periodicity are demonstrated in the flow evolution with increasing A ,  especially in 
the development of the corner eddies and in the unexpected consequence of their 
merging upon the evolution of the length of the preceding central cell. 

2. Mathematical formulation and numerical procedure 
Let us consider an infinitely long vertical circular cylinder of radius R ,  placed 

symmetrically in a horizontal channel of rectangular cross-section, which is limited 
by two flat endwalls, parallel to  each other and normal to the axis of the channel, as 
shown in figures 1 and 4 ;  2x0 and 2y0 are respectively the length and the width of the 
channel. 

This channel is filled with a highly viscous fluid of constant physical properties ; its 
kinematic viscosity is denoted by v. The motion is obtained by a very slow rotation 
of the cylinder with a uniform angular velocity wo. Thus the Reynolds number of the 
flow, defined by Re = (woR2) /v ,  is supposed to  be sufficiently small to ensure the 
validity of the Stokes regime hypothesis. Under these conditions, the equation of 
motion in the horizontal cross-section is 

V2(V2 Y )  = 0, (1) 
where Y is the stream function and V2 a second-order differential operator. 

Bouard & Coutanceau (1986) in the form 
The solution of ( l ) ,  expressed in polar coordinates, was given by Bouard (1983) and 

Y = ao+bo log r + c o r 2 + d o r 2  log r 

+ ( a l r ; 1 + b , r l o g r + c , r + d l r 3 )  cosd 

+a; r - l+  b; r log r + ci r + d;  r 3 )  sin 19 

+ C 
a 

(a,  r-, + b, r-n+2 + c, rn + d, rn+2) cos n6 
n-2.3 ... 
a 

+ 2 (ui  r-n + bh + ch rn + dh rn+2) sin n6, (2) 
n=z.  3... 

where a,, b ,  . .. are arbitrary coefficients to be determined by the boundary conditions. 
In our case, if the coordinate r and the radial and the tangential velocity components 
V,  and V, are normalized by R and woR respectively, these conditions are 

no slip on the cylinder: v ,=o,  & = 1 ;  
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FIGURE 1. Coordinate frames related to the channel and cylinder respectively. 

no slip on the channel walls: v , = v , = o ;  
and the conditions related to the antisymmetric behaviour of the flow : 

Y ( r , 0 )  = Y ( r , n - 0 ) ,  ul(r,0) = Y(T, -0).  

Applying the symmetry condition and the no-slip condition on the cylinder to  (2), we 
obtain 

+ rpn n+l rn+rniP)d,] cos no, (3) 
n n  

where n is an even integer because of the antisymmet,ry of the flow. For convenience, 
we impose Y = 0 on the channel walls ; thus the constant a, is expressed as a function 
of b, ,d ,  and yo. Note that b, represents the ratio of the torque experienced by the 
cylinder in the channel to the torque experienced by this cylinder in an infinite 
medium ; thus b, is a measure of the global confining effect. 

As opposed to the no-slip condition on the cylinder, which is satisfied exactly by 
the polar coordinate series (3), the no-slip condition on the channel walls cannot be 
satisfied exactly by these series because these walls are not coordinate surfaces of the 
frame that we have used to define the stream function. Thus, this latter condition has 
been satisfied optimally by using a numerical method. For this purpose, the 
quadratic minimization method proposed by Bourot (1 969) to resolve the satisfaction 
of the boundary conditions has been used. The efficiency of this method, which is 
easy to program, has often been proved, for example in the recent works of 
Coutanceau & Thizon (1981), Maalouf & Bouard (1986), Bourot & Moreau (1987). 
This method consists of minimizing the quadratic difference between the imposed 
velocity on the boundary and the velocity deduced from the series (3), which may be 
written in the form 

Vdds=O, i = 1 , 2  ,..., m+1, 
a 4  r 

where A, represents the coefficients b,, b,  and d,, N the number of terms retained in 
the series (3) and r is the outer boundary, limited here to  a quarter of the channel 
boundary because of the symmetry of the problem, see figure 2. Indeed, for 
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FIQIJRE 2. Outer boundary retained for the calculations. 

Aspect ratio Velocity 

1 .o 5.4 x 10-7 
1.5 1.6 x 10-7 
2.0 1.7 x 10-7 
2.5 5.4 x 10-7 
3.0 2.4 x lo-’ 
3.5 9.6 x lo-‘ 

TABLE 1. The mean values of the velocity on the channel walls 

convenience of programming, we can write the expressions for the velocity 
components, calculated from the stream function (3), in the linear form 

v, = m,E;, j= 1,2 )..., m+1, 
i 

V, = r + C A f G i ,  j = 1,2 ,..., 2N+1. 
i 

Then the minimization yields the linear system 

C A , C ( F , F , + C , G , ) = - r C G , ,  i = j =  1 ,2  ,..., W+1. 
1 NP NP 

In  this system, the integrals are replaced by a simple summation on an adequate 
number N p  of points, regularly spaced on the boundary r, which must be at least 2.5 
times the number of coefficients (see Sigli 1970). 

This value is of the order of the velocity in the farthest cell for the largest aspect ratio 
studied here, i.e. A = 7 .  Thus, using 61 coefficients of the series and 181 minimization 
points, we have obtained excellent accuracy for aspect ratio A up to  3, see table 1. 

However, beyond A = 3, this accuracy becomes insufficient to detect clearly the 
cellular flow near the endwalls. The increase of the error is due to the presence of the 
positive exponents in the series which increase with increasing distance. To solve this 
problem, we have introduced, in addition to the polar coordinate series, Cartesian 
coordinate series expansions, which satisfy exactly the no-slip condition on the 
longitudinal channel walls. These series expansions were given by Bourot (1984), for 
antisymmetric flow, in the form 

In our calculations, the limiting value of the accuracy tolerance was fixed at 

m 

Y(x,y) = eAnZ{An(Pn cos,u,x-&,, sin,unx)+Bn(Pn sin,u,x+&, cos,unx)} 
n=l ,  2 

+e+n”{C,(P, cos,unx+&, sin,unx)+Dn(Pn sin,unx-Qn cos,unx)}, (4) 
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B : A  

Cartesian series 

T 

I Polar series 

Matching line 

FIQURE 3. Delineation of the domains where the polar and Cartesian coordinate series are used. 

AC 
V P 5 V V 

- AP - A V  - 

A Matching line Lateral wall Endwall 

4 2.1 x 10-7 2.6 x 10-8 4.3 x 10-8 1.5 x 10-9 2.9 x 10-7 
5 2.5 x 10-8 2.8 x 10-9 4.9 x 10-9 4.3 x 10-10 5.8 x 10-8 

7 8.4 x 10-9 1.2 x 10-9 2.3 x 10-9 3.2 x 10-10 1.1 x 1 0 - ~  
6 8.1 x 1.1  x lo-' 2.4 x 3.2 x lo-'' 1.5 x lo-' 

TABLE 2. Test showing the accuracy of the calculation from the verification of the matching 
and no-slip condition; V, P, 5 are the velocity, pressure and vorticity respectively. 

with 

2Pn = (~o-y){sin An(yo+y)  c o s h ~ ~ n ( ~ o + ~ ) } + ( y o + y ) { s i n  A n ( y n - Y )  c o s h ~ n ( ~ o - ~ ) ) ,  

2Qn = ( Y ~ - Y ) { c o s ~  An(yn+y) ~ i n h ~ n ( ~ o + ~ ) } +  ( Y ~ + Y )  

{COS An(y0-y) sinh pn(Yn-Y)), 

and A, and p n  solutions of the complex equation 

sin 2a, yo = - 2a, yo, an = A, + ip,. (5) 

For more information about the properties of the corresponding expansion functions 
of ( 4 )  (also encountered frequently in the solution of elasticity problems (Buchwald 
1964) and known as Papkovich-Fadle functions), see Joseph & Sturges (1975), 
Bourot (1984): Moreau (1985).  Here we refer to  the values given by Moreau with 32 
digits for the real and imaginary parts of a,  ( n  = 1-6)  and for the corresponding 
length and intensity ratio between two successive cells of the same range. 

When the aspect ratio is greater than 3, we have matched the polar coordinate 
series (3) and the Cartesian coordinate series ( 4 ) ,  satisfying the no-slip condition on 
the cylinder and on the lateral walls respectively, so that the following conditions 
remain to be verified: the no-slip condition on part AB of the wall, with the polar 
coordinate series, see figure 3;  the no-slip condition on the endwall, with the 
Cartesian coordinate series ; the matching of the two series to ensure the continuity 
of the velocity and of the stress. 

The matching of the series was done, using again the least-squares method, on a 
straight line positioned at x = 1.5yo; this position, was selected not too far from the 
cylinder but beyond the extent of the main rotating flow. In  this way, we have 
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Motion-driving device A 

gulated bath 

/ 

FIQIJRE 4. Sketch of the experimental apparatus. 

obtained excellent results for A greater than 3, as shown in table 2 for the velocity V ,  
pressure P ,  and vorticity 6. 

3. Experimental technique 
Figure 4 shows a sketch of the apparatus constructed to visualize the flow. The 

Altuglass tank with a parallelepiped shape of 28 cm in length, 4 cm in width and 
10 cm in height is filled with a highly viscous silicon oil of viscosity 300 P. The motion 
is obtained by the uniform rotation of a circular cylinder of 2 cm in diameter and 
16 ern in length positioned vertically in the middle part of the channel ; the rotation 
speed is wo = 3.7 r.p.m. Thus the Reynolds number is about 0.001. Adjustable flat 
walls are positioned normally to the channel axis at the same distance on both sides 
of the cylinder. The visualization is carried out using very small cuttings of 
magnesium of about 40pm in length and 4 p m  in thickness. They remain in 
suspension for several weeks and even months as their settling speed remains quite 
negligible. They are illuminated by a horizontal thin sheet of light coming from an 
halogen lamp device. 

Given that the velocities decrease exponentially along the channel axis, very long 
times of exposure are required to visualize the flow in the whole domain, particularly 
for observing the small particle displacements near the endwalls, and for the high 
aspect ratios. Consequently, it was necessary to take extreme precautions for 
reducing to a minimum the disturbing currents, especially the natural convection 
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(4 

FIGURE 5. Evolution of the structure a- the first corner cell: (a) A = 1, ( b )  A = 1.33, 
(c)  A = 1.50. 

currents, which are liable to change completely the phenomena studied. This 
difficulty has been overcome by the use of a highly viscous oil associated with a 
suitable rotating speed of the cylinder, ensuring both very low Reynolds number and 
Newtonian behaviour of the liquid. Furthermore, the channel is fixed in a 



Cellular Stokes flow induced by rotation of a cylinder 565 

thermoregulated bath and intermittent lighting (every 10 s) was used to avoid 
overheating the fluid; this technique of intermittent exposure was used for A greater 
than 3. Moreover, it  appears necessary to position the cylinder with great precision 
to avoid transverse velocities and consequently streamlines that are not closed. 

4. Numerical and experimental results 
Let us now compare our experimental and numerical results on the process of 

formation of the first and the second single cells. For this purpose, parallel 
presentation of the calculated streamline patterns and the visualization pictures are 
given in figures 5-7, 11 and 12. 

4.1. Formation process of the Jirst single-core cell 

For A = 1,  the flow pattern, which is displayed in figure 5 ( a ) ,  shows that the 
streamlines of the main flow, i.e. the flow directly driven by the rotation of the 
cylinder, are quasi-circular near the cylinder but tend towards the shape of the 
channel walls when close t o  them ; for comparison, broken circular lines have been 
also plotted. Moreover, in each corner, a cell of triangular shape, centred on the 
diagonal of the cross-section considered, is observed. This cell is in fact the first of the 
infinity of Moffatt corner cells which we know to exist (Moffatt 1964). We notice the 
excellent agreement between our numerical and our experimental results. Indeed this 
good agreement has been obtained for all the aspect ratios studied in this work. 
Furthermore, for this case of A = 1, there is very good agreement with the results of 
Lewis (1979) obtained for Re = 1, both for the streamline pattern and the equi- 
vorticity pattern (see Hellou 1988) showing that, in these confining wall conditions, 
inertia interaction is not yet significant. 

If we keep the same confining aspect ratio (0.50), it  is seen from figures 5 ( b )  and 
5(c) ,  that when the aspect ratio increases from 1 to 1.50, the corner eddies grow 
progressively larger and the two dividing streamlines which separate them from the 
main rotating current, come into contact. This leads, at about A = 1.50, to the 
formation of a continuous dividing streamline touching the middle of endwall. As 
soon as A increases beyond 1.50, this streamline detaches from the endwall and 
consequently the two corner eddies come into contact by means of a saddle point, see 
figure 6. This is the start of the process of the coalescing of these eddies, which 
becomes effective a t  A = 1.80, leading to the formation of the first single-core cell; 
the photos and streamlines in figure 6(b-f) have been selected to show precisely the 
different phases of this process. 

The evolution of the single-core cell as a function of A is presented in figure 7 (a-g). 
By examining the streamline patterns associated with the visualization pictures, we 
see that, when A increases from 1.81 to 4, this cell grows in its turn, becoming more 
and more stretched towards the endwalls. Furthermore, for A = 4, the presence of a 
new pair of corner cells is clearly seen. These corner cells exist in fact a t  the previous 
aspect ratios, but they are much too small and too weak to be visualized. However, 
our calculations are sufficiently precise to detect them and show that the evolution 
of their size becomes relevant only beyond A about 3.8. Consequently, the process of 
formation of a second single-core cell begins to be active from this stage. However it 
is important to note that the evolution of the first single-core cell is not yet complete. 

Some similar configurations to those presented in figures 5-7 were found 
numerically by Shen & Floryan (1985) and experimentally by Taneda (1979) in the 
case of the flow induced in rectangular cavities by an external shear flow. These 
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FIGURE 6. Formation of the first single-core cell from a two-core one: (a) A = 1.53; 
( b )  A = 1.58; ( c )  A = 1.68: ( d )  A = 1.72; (e)  A = 1.77; (f) A = 1.79. 

authors have also found that the formation of a single cell starts from the corners. 
However, they did not give either the details of the corresponding process or the 
quantitative evolution of the geometrical features of the cells, which we propose to 
do now. 
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FIGURE 7(e-g). For caption see facing page. 
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4.2. Evolution of some typical $ow characteristics during the formation of the jirst 
single-core cell 

In order to characterize the structure of the flow during the formation of the first 
single-core ccll and its evolution with increasing aspect ratio of the channel, we plot, 
in figure 8, curves ( a )  and ( b )  showing the evolution of the lengths of the sides Ls, and 
LR1 of the first corner cell. It is seen that L,, and L,, grow similarly for A up to about, 
1.30. When A exceeds this value, the transverse growth of the cell clearly accelerates 
compared with the lateral growth. I n  fact, from A = 1.40, the displacement of the 
separation point S, corresponds to the endwall displacement itself and, a t  A = 1.50, 
the reattachment point R, reaches the channel axis. 

Figure 9 presents the evolution with A of the intersection I, (I, is defined on figure 
10a) of the first dividing streamline with the channel axis; the broken line 
corresponds to the location of the endwall of the channel. It is confirmed that the 
dividing streamline, which delineates the main driving rotating current, detaches 
from the endwall a t  A = 1.50, then moves towards the cylinder and, for A = 2.80, 
reaches a limiting location a t  a distance of 1 . 0 7 ~ ~  from the origin 0. Consequently, 
from this stage, the domain occupied by the main rotating current becomes confined 
approximately to a square region. 

The data are completed by the evolution of the axial stagnation point C, (in figure 
10b) and that of the corner vortex core C:, (in figure 1Oc) during the process of 
coalescing ( A  increases from 1 to 1.8); C, and C;, are defined on figure 10(a). A new 
phenomenon appears, namely that during the coalescing of the two corner cells, the 
stagnation point C,, which is still a saddle point a t  this stage, is thrown back rapidly 
towards the cylinder, while the two corner vortex cores approach each other to merge 
with C, into a single point a t  A = 1.80. With further increase of A ,  C, moves off 
towards the endwall and reaches a limiting position at a distance of 1 . 5 1 ~ ~  from the 
origin. Consequently, we conclude that the complete merger of the corner cells occurs 
when the distance of the stagnation point from the cylinder is at a minimum. Taking 
into account the fact that we have chosen a very large scale to show the phenomena 
clearly and that the experimental measurements are made within a measure of 
uncertainty, the agreement between the experimental and numerical data is very 
good. 

4.3. Process of formation of the subsequent single-core cells 
The new main corner cells, shown for A = 4 in figure 7,  grow progressively larger and 
begin to coalesce a t  A w 4.34, as clearly shown in figure 11 (a ,  b).  With a further 
increase of A ,  we proceed to the formation of a second single-core cell, which grows 
in its turn, as seen in figure 12(a, b).  Note the still excellent agreement between the 
calculations and the visualization pictures, particularly for the aspect ratios 5 and 7 
for which the visualization was extremely difficult to realize, especially because of the 
very rapid decrease of the velocity as we move away from the cylinder, as explained 
before. The flow photographs, obtained by intermittent exposures of 10 s during two 
hours, illustrate clearly the velocity ratios in the cell field. For example, when the 
first cell touches the driving rotating current, a fluid particle describes a long trace 
during each 10 s exposure while, in a t  the other end of this cell, only a point appears 
during this time. In  the second cell, the particle traces correspond to the two hours 
exposure ! 

FIGURE 7. Evolution of the structure of the first single-core cell and the accompanying new corner 
cells: (a) A = 1.81 ; ( b )  A = 2.02; (c) A = 2.51 ; (d )  A = 3.05; ( e )  A = 3.59; (f) A = 4;  (9) A = 4.30. 
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aspect 

0.65 0.951 

4 : .  : .  : .  : .  ' . *  
1.3 1.9 2.5 3.1 3.7 

A 
FIGURE 9. Evolution of the intersection I, of the first dividing streamline with the channel axis aa 
a function of the aspect ratio A : -, numerical results ; 0 ,  experimental results ; - - - -, location of 
the endwall. 

As we have shown in $4.2, the flow structure is clarified by means of the evolution 
of some flow characteristics. Thus, figures 13 and 14 show the evolution of the 
intersection I, of the second dividing streamline with the channel axis, and of the 
second stagnation point C, respectively. Similar patterns to  those described for I, 
and C, are found again, showing the periodic character of the evolution. This 
periodicity is also illustrated in figure 15, which presents in parallel the evolution of 
the length of the two single-core cells. It is interesting to note that during the 
development of the second cell, the length of the first cell contracts from its 
maximum value of 3.27y0, which is reached when the new coalescing process begins, 
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\ t 

( b )  A = 4.40. 
FIGURE 11 .  Formation of the second single-core cell from the new two-core one: (a) A = 4.35; 

to adjust finally to a length of 2 . 8 0 ~ ~  which corresponds to the length of the reference 
cell, i.e. to the length of the cell which would be created in an infinitely long channel. 
Furthermore, both the numerical and experimental results confirm that the angle of 
separation of the cell dividing streamlines approaches the theoretical limit of 58.61" 
given by O'Neill (1983), when the aspect ratio becomes large; this is already well 
verified for the second dividing streamline from the value of A for which the first cell 
has reached its limiting structure i.e. for A > 5.71. However, the first dividing 
streamline, which remains influenced by the source of motion, namely the rotating 
cylinder, separates from the longitudinal walls with a greater angle (about 69"). 

To complete our discussion on the periodicity of the cell formation, we have 
collected, in table 3, particular sequences of cell formation. We see, firstly, that the 
second coalescing process starts when the distance between the stagnation point C, 
of the previous cell and the endwall is equal to 2 . 8 0 ~ ~ .  Secondly, the aspect ratio 
which corresponds to each sequence of the formation of the second single cell 
(coalescing, merger, etc.) is obtained by the addition of the value of 2.80 to  the aspect 
ratio that corresponds to the same sequence in the first single cell. Thus, we may 
conclude that the parameter 2 . 8 0 ~ ~  represents the aspect-ratio period of the 
formation of the successive single-core cells. 
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FIGURE 12. Evolution of the structure of the second single cell: (a)  A = 5; ( b )  A = 7 
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FIGURE 13. Location of the intersection I, of the second dividing streamline with the channel axis 
as a function of the aspect ratio: -, numerical results; 0 ,  experimental results; ---, location 
of the endwall. 
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FIGURE 14. Location of the stagnation point C, of the second cell as a function of the channel aspect 
ratio : -, numerical results ; ---, location of the endwall. 

5. Conclusion 
A low-Reynolds-number flow, driven by a rotating circular cylinder in a 

rectangular channel, has been analysed experimentally and numerically when the 
aspect ratio increases from 1 to 7,  the main purpose being to determine the process 
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FIGURE 15. Evolution, as a function of the channel aspect ratio, of the length of the first and 
the second cells. 

Sequence of events A 

Separation of the first dividing streamline from the endwall 

Merger of the two first vortex core cells which leads to  a single-core cell 

1.50 

1.80 

2.80 

3.81 

4.34 

4.65 

5.71 

6.62 

7.10 

8.5 

TABLE 3. The main sequences of events in the process of formation of the first and second 
single-core cells with increasing aspect ratio 

The first dividing streamline reaches a limiting location of 1 . 0 7 ~ ~  on the flow axis 

The axial stagnation point reaches a limiting location of 1 . 5 1 ~ ~  

Separation of the second dividing streamline from the endwall; the length of the first 

Merger of a new main pair of vortex cores and formation of a second single-core cell 

The second dividing streamline reaches a limiting location and consequently the length 

The stagnation point of the second single-core cell reaches a limiting location of 4 . 3 0 ~ ~  

Separation of the third dividing streamline from the endwall; the length of the second 

The third dividing streamline reaches a limiting location and consequently the length of 

cell is a t  a maximum, i.e. 3 . 2 7 ~ ~  

of the first single-core cell reaches its limiting value, i.e. 2 . 7 9 8 ~ ~  

on the flow axis 

single-core cell is maximum, i.e. 3 . 2 3 ~ ~  

the second single-core cell reaches its limiting value, i.e. 2 . 7 9 2 ~ ~  

of formation of the successive cells which result. An excellent agreement between the 
numerical and experimental results has been found in all cases studied. 

It has been shown how successive central cells form from the corners of the 
channel. Thus, when the aspect ratio increases from 1,  the main corner cells grow 
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larger, coalesce and progressively merge into one single-core cell, which in turn grows 
longer as A increases. Then, when the distance between the stagnation point of this 
single-core cell and the endwall is equal to 2.80 times the channel width (yo), a new 
pair of corner cells begins to coalesce; a t  this stage, the length of the previous cell is 
a t  a maximum. During this second coalescing process, the first cell contracts slightly 
to adjust finally to  the structure of the reference cell, i.e. the cell which would set up 
in an infinitely long channel whatever the source of motion may be. A further 
increase of A provokes the development of a second single-core cell which evolves 
similarly to the first one. This periodicity has been proved both qualitatively and 
quantitatively. I n  fact, i t  has been found that every sequence in the cell formation 
repeats exactly when A increases with a step of 2.80. Consequently, knowledge of 
the detailed evolution of the first cell permits the structure of the flow for any other 
aspect ratio to be determined. The numerical results are given with an unusually high 
precision. 

Complementary data concerning the flow evolution with the increase of the 
channel aspect ratio may be found in Hellou’s (1988) thesis; they concern, in 
particular, velocity profiles, vorticity distribution on the channel walls, pressure on 
the rotating cylinder, the torque experienced by this rotating cylinder. Likewise, 
convincing comparisons with the results obtained by the authors quoted in our 
introduction, more especially with the results which concern the rectangular cavity, 
are given there and analogies shown. 

Finally, the way the flow structure is progressively modified as the Reynolds 
number increases is under consideration and will be the subject of a future short 
paper. 

The authors wish to thank Professor J. M. Bourot for originally suggesting the 
problem and his useful advice, as well as Professor S. C , R. Dennis for interesting 
discussions especially in view of a future numerical extension of the present 
calculation. We also thank Dr R.  Bouard who helped us in the first phase of the 
experimental technique elaboration. 
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